Applying Artificial Neural Networks to Color Recipe Prediction
Most current color prediction technologies are based on the Kubelka-Monk theory, “an iterative approach [that] tries to minimize the difference between the swatch and predicted tristimulus values.”2 While this model has greatly expanded opportunities for consistent, cost-effective commercial-scale leather dyeing, it cannot be applied to all situations. As such, researchers are experimenting with applying Artificial Neural Networks (ANNs) to color recipe prediction to overcome the limitations of K-M theory and enhance leather dye formulation.
ANNs are modeled on biological processes and designed to learn over time, allowing it to adapt and become more precise in response to new information. Stephen Westland of the Colour & Imaging Institute at Derby University believes that incorporating these powerful tools offers the leather manufacturing industry a higher level of control while eliminating the need for complex sample preparation. To test his hypothesis, he used a sphere-based reflectance spectrophotometer to “computer color differences between predicted reflectance spectra and actual reflectance spectra” in samples dyed using K-M and ANN-based recipes.3 The spectral data revealed that ANNs are capable of accurate color prediction and, in fact, outperformed the K-M model.
A similar study focusing specifically on leather dyeing was published in Coloration Technology last year and confirmed that ANNs offer superior performance over K-M-based prediction. By averaging samples analyzed via d/8° instrumentation in RSEX mode, researchers from the Central Leather Research Institute and BSA University in Chennai found that the ANN produced “more reliable and consistent results … especially for a substrate such as leather,” which has historically been prone to unpredictability. However, both studies note that “in order to outperform the K-M model the ANNs required more training samples,” which many limit its use within small batch leather dyeing or for manufacturers making frequent color changeovers.
HunterLab Innovation
HunterLab spectrophotometers are renowned throughout industry for their extraordinary level of accuracy, precision, and flexibility. With a complete range of portable, benchtop, and inline instruments to choose from, we have the tool researchers and leather manufacturers need to evaluate both new and existing dye technologies both in the lab and on the factory floor. When used in combination with our sophisticated software packages, you have the ability collect, display, and interpret color data, allowing you to easily correlate spectral information to process variables and offering you nearly limitless possibilities for meaningful analysis. Contact us to learn more about our lineup of products, world-class customer support services, and how we can help you achieve complete color quality control.